Infrastructure Investment, and the 4th Industrial Revolution in Financial Sector

Naoyuki Yoshino Dean and CEO

Asian Development Bank Institute (ADBI)
Professor Emeritus of Keio University

Outlines

- 1, Asia's Sustainable Growth
- 2, Asset Price Bubble and Households' Debt
- 3, Infrastructure Investment and
 - One Belt and One Road
- 4, Community Financing for Green Energy
- 4, Fin Tech Revolution and Education
- 5, Aging population and Future Issues

1.0.2 Global shares of income, 2015

Note: Weights are based on gross national income

2.1.2 GDP per capita, PPP (2011 \$)

GDP growth in the major industrial economies (%)

	2015	2016	2017	2018
Area	Actual		ADO projection	
Major industrial economies	2.2	1.6	1.9	1.9
United States	2.6	1.6	2.4	2.4
Euro area	1.9	1.7	1.6	1.6
Japan	1.2	1.0	1.0	0.9

Asia's GDP Share in the World High savings rate, Good education

Bubble: Housing and Real estate market

日本のバブル 1985年~1990年 米国のバブル 2002年~2006年 日本のバブル 1991年~2001年 米国のバブル 2007年~2010年

Bubble Indicators Bank based financial Market of Asia

(i) the ratio of banks' real estate-related loans to the loans of banks overall, In Japan, this ratio rose from 16% to 32.6%,

Lr > Ltotal

(ii) Comparison of the pace of growth in banks' real estate lending with the real economic growth rate,

 $\Delta Lr/Lr > \Delta Y/Y$

(iii) The rise in the housing prices compared with the average income of workers

 $Ph > \alpha Y$

Growth rate of Real estate loans / GDP Growth

China's Bank Loan/GDP ratio

Fig. 9 Housing price/income ratio of Japan

PRC: House Price / Income ratio

 $\Leftrightarrow L_n = (1+r)^n L_0 - (1-c) \{ (1+r)^{n-1} Y_1 + (1+r)^{n-2} Y_2 + \dots + (1-r) Y_{n-1} + Y_n \}$ **Private Debt**

$$\Leftrightarrow L_n = (1+r)^n L_0 - (1-c) \{ (1+r)^{n-1} (1+a) + (1+r)^{n-2} (1+a)^2 + \cdots + (1-c)^n \}$$
 This is a sum of the second of the sec

$$\Leftrightarrow L_n = (1+r)^n L_0 - \frac{(1-c)(1+a)}{(r-a)} \{ (1+r)^n - (1+a)^n \} Y_0$$

$$L_n = (1+r)^n L_0 - \frac{(1-c)(1+a)}{(r-a)} \{ (1+r)^n - (1+a)^n \} Y_0 < 0$$

$$\left| \frac{L_0}{Y_0} < \frac{(1-c)(1+a)}{(r-a)} \left\{ 1 - \left(\frac{1+a}{1+r} \right)^n \right\} \cdots (2) \right|$$

$$\frac{L_0}{n} + rL_0 = \beta Y_0 \cdots (3) \qquad \qquad \frac{L_0}{Y_0} = \frac{n\beta}{nr+1} \cdots (4)$$

$$\frac{n\beta}{nr+1} < \frac{(1-c)(1+a)}{(r-a)} \left\{ 1 - \left(\frac{1+a}{1+r}\right)^n \right\} \cdots (5)$$

$$\left|\beta < \frac{(1-c)(1+a)}{(r-a)} \left\{ 1 - \left(\frac{1+a}{1+r}\right)^n \right\} \frac{nr+1}{n} \cdots (6)$$

- 2, Registration by FSA
- 3, Tears of Borrowing
- 4, Central data registration
- 5, Borrowing amount **Compared to Sales**
- 6, Growth of Income

(Growth of business)

Direct Effect and Spill-over Effects One Belt and One Road

Production Function Y=F(Kp, L,

Y= Output, Kp= private capital, L = labor Kg = public capital (infrastructure)

Asian Development Bank Institute and Professor Emeritus, Keio University, Ja-

NAOYUKI

YOSHINO

MASAKI NAKAHIGASHI Niigata University, Japan

Spring 2017 Vol.1/No.2

NOMURA JOURNAL OF ASIAN CAPITAL MARKETS

Attract Private F Infrastructure Ir Injecting Spillov

Need for Infrastructure Investment

n Southeast Asia, USD 8 billion in infrastructure investments are implemented every year. However, it is expected that USD 210 billion infrastructure investment is needed every year. Public money is insufficient to satisfy Asia's infrastructure needs. In many developing countries in Asia, we observe heavy traffic congestion in cities; highways, trains and various modes of public transport are lacking. Public-Private Partnerships (PPPs) have been promoted for infrastructure development in India, Thailand and other places in Asia, However, most PPP projects were disappointing since the rate of return on infrastructure depends mainly on user charges, such as train fares and highway tolls. When the region was hit by economic crisis after the Lehman shock, the private sector withdrew from infrastructure investment. Risks associated with infrastructure were so large that private investors were hesitant to put their money in infra-

It is well known that good infrastructure creates huge spillover effects in the

Injection of Increased Tax revenues

Increase of tax revenues by spillover effect

Infrastructure Revenue Bond

Revenue
Bond
(user charges)
and
(Spillover effects)

Journal of Asian Economics 49 (2017) 1–11

Contents lists available at ScienceDirect

Journal of Asian Economics

Full length article

An impact evaluation of investment in infrastructure: The case of a railway connection in Uzbekistan **

Naoyuki Yoshino^a, Umid Abidhadjaev^{b,*}

Japanese Bullet Train

Total tax revenue, mln. JPY

American Journal of Economics 2016, 6(4): 189-199 DOI: 10.5923/j.economics.20160604.02

Explicit and Implicit Analysis of Infrastructure Investment: Theoretical Framework and Empirical Evidence

Naoyuki Yoshino¹, Umid Abidhadjaev^{2,*}

¹Asian Development Bank Institute, Tokyo, Japan ²Keio University, Graduate School of Economics, Tokyo, Japan

One Road and One Belt

Infrastructure & Education

 Steady state equation in logarithmic form

$$lny(2010) - lny(1991) =$$

$$(1 - e^{-\lambda t}) \left(\frac{\theta}{1 - \theta - \beta - \alpha}\right) ln(\varphi) +$$

$$(1 - e^{-\lambda t}) \left(\frac{\beta}{1 - \theta - \beta - \alpha}\right) ln(1 - \varphi) +$$

$$(1 - e^{-\lambda t}) \left(\frac{\theta + \beta}{1 - \theta - \beta - \alpha}\right) ln(\tau) +$$

$$(1 - e^{-\lambda t}) \left(\frac{\alpha}{1 - \theta - \beta - \alpha}\right) ln(s(1 - \tau)) -$$

$$(1 - e^{-\lambda t}) \frac{\alpha + \beta + \theta}{(1 - \theta - \beta - \alpha)} ln(n + \delta + g) -$$

$$(1 - e^{-\lambda t}) lny(1991)$$

NOTE:

Context: 44 developing countries, 1991-2010 **Methodology:** Production function approach

Point of novelty and findings:

Study incorporated infrastructure variable into neoclassical growth framework and demonstrated that controlling for share of working age population with university level of education infrastructure investment to GDP ratio constituted statistically significant determinant of accumulated growth rate of GDP per capita

Estimation of The Neoclassical Growth Model with					
Infrastructure Investment					
Dependent variable: log difference GDP per capita in 1991-					
	2010				
Regression number	ber REG.1 REG.2 RE				
Variables	Coef.	Coef.	Coef.		
lnY_1991	-0.06	-0.14	-0.14		
	(-0.54)	(-1.35)	(-1.38)		
In(n+g+d)	-3.09	-5.75	-4.36		
	(-0.59)	(-1.23)	(-0.77)		
In(Kg)	0.23	0.31	0.53		
	(1.17)	(2.00)	(3.30)		
In(Sec)			0.00		
			(0.46)		
In(Kg)xIn(Sec)	0.20				
	(1.59)				
In(Uni)			0.21		
			(2.07)		
In(Kg)xIn(Uni)		0.24			
		(2.76)			
Constant	-0.28	0.56	0.48		
	(-0.33)	(0.69)	(0.57)		
Number of observations	44.00	44.00	44.00		
R-squared	0.21	0.30	0.30		
F-statistic	2.62	4.14	3.29		

Injection of Increased tax revenues into hydropower projects in order to increase the rate of return for private investors

Injection of Increased tax revenues into hydropower projects in order to increase the rate of return

Financing Scheme for Renewable Energy Projects Using HITs and Carbon Tax

4- "Hometown investment trust funds": community based solution for financing smaller scale energy projects (solar, small hydro,…)

Hometown investment trust funds a new way to finance for Wind power generators, solar power panels etc.

SME =small and medium-sized enterprise.

Source: Yoshino and Taghizadeh-Hesary (2014).

10/14/2016 25

Example of implementation of hometown investment trust funds in green energy projects: Solar roof project

- Business owner: Easley Co., Ltd.
- Region: Nagano prefecture
- -Installation location: Roof of private building around Chino city
- Installation period: From December 17, 2015 to March 31, 2016
- Operation period: 10 years
- -Number of applicants: 74 people

Expansion of Solar power projects throughout Japan by utilization of hometown investment trust funds

4th Industrialization and Financial Technology

- 1, Purchase of various financial products through mobile phone
- 2, People can access to financial products all over the world
- 3, Branch offices are no longer important
- 4, Individual behavior can me monitored by record of credit cards
- 5, Financial Literacy and financial education become important
- 6, Transfer of payments and remittances are handled by Fin Tch
- 6, Book market Amazon can sell various books by internet Many books stores in Japan had been closed
- 7, Identification number and protection of secrecy of individuals
- 8, Financial regulation by international coordination

Promoting Better Lifetime Planning Financial Education

Editors

Naoyuki Yoshino

Asian Development Bank Institute, Japan

Flore-Anne Messy

Organisation for Economic Co-operation and Development, France

Peter J Morgan

Asian Development Bank Institute, Japan

Committee for the Promotion of Financial Education

Chair Person, Naoyuki YOSHINO

Central Bank of Japan

Financial Services Agency (FSA)

Ministry of Education

Consumer Affairs Agency (Government of Japan)

Bankers Association of Japan

Securities Dealers Association

Insurance Association

Trust Bank Association

Investment Trust Association

Financial Planners Association, NGOs

Distribution of high financial literacy scores

Table: Proportion of those who had high score (21/25-25/25), roughly top 20% (as figure 35 in BoJ book)

	All	Male	Female
All	20.9%	26.5%	 15.5%
Age<30	10.1%	12.9%	7.2%
Age>=30&Age<40	16.6%	22.7%	10.3%
Age>=30&Age<40	20.7%	26.6%	14.8%
Age>=50&Age<60	25.8%	30.8%	20.9%
Age>=60&Age<70	28.1%	35.1%	21.9%
Age>=70	23.9%	31.8%	16.8%

Source: Author

Regional Disparities in Japan

Distribution of financial literacy, product purchases and education by income group

Source: Authors

Financial Regulation of Fin Tech Industry

<Single Regulator> Banks, Insurance, Trust Funds, Finance companies, Securities <IT Industries come into financial service> Cash transfer Purchase of various goods through internet **Deposit taking**

Population Aging in Asian Countries

Contents lists available at ScienceDirect

Japan and the World Economy

journal homepage: www.elsevier.com/locate/jwe

Declined effectiveness of fiscal and monetary policies faced with aging population in Japan **

Naoyuki Yoshino^a, Hiroaki Miyamoto^{b,*}

^a Asian Development Bank Institute, Japan

³ International Monetary Fund, United States

Increase in Social Security Benefits and the demographic transition in Japan

 With the rapid progress of aging population, social security benefits have been increased.

Household's problem (2.1)

Worker's problem:

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left\{ \frac{1}{1-\sigma} \left[\left\{ \omega c_{w,t}^{\frac{\zeta-1}{\zeta}} + (1-\omega) g_t^{\frac{\zeta-1}{\zeta}} \right\}^{\frac{\zeta}{\zeta-1}} \right]^{1-\sigma} + \frac{m_{w,t}^{1-\gamma}}{1-\gamma} - \frac{h_{w,t}^{1+\mu}}{1+\mu} \right\}$$

s.t.
$$c_{w,t} + k_{w,t} + m_{w,t} + b_{w,t} = w_t h_{w,t} + r_{k,t} k_{w,t-1} + (1 - \delta) k_{w,t-1} + R_{t-1} \frac{b_{w,t-1}}{\pi_t} + \frac{m_{w,t-1}}{\pi_t} + d_{w,t} - \tau_{w,t}$$

Retiree's problem:

$$c_{r,t} = s$$

(a) Effects of an expansionary monetary policy

(b) Effects of a positive government investment shock

Population Productivity based wage rate and postpone retirement age Yoshino-Miyamoto (2017) Japan and the World Economy

Miyamoto (2017) Credit

and Capital Markets

Yoshino-Farhad-

Source: Yoshino and Miyamoto (2016).

1, Infrastructure Finance

How to attract private finance? How to achieve high rate of return?

2, SMEs and Start up Finance

Finance, Human capital development Crowd funding (Hometown Trust Funds)

- 3, Avoid massive capital inflow and outflows Increase domestic Savings
- 4, Long term savings to finance infrastructure and corporate bonds

- 5, Income disparities are increasing Tax compliance, Progressive tax rate
 - Land tax, wealth tax, inheritance tax
- 6, Central Local government relations
- 7, Education, Human Capital Development
 - Continental Europe, zero tuition
- 8, Good Governance
- 9, Environmental Protection

Year	Produce	rs CPI	BM	Money	Exchange	e Stock	Land	Oil	Year
(0)	(1)	(2)	(3)'	(4)	(8)	(9)	(10)	(11)	
1984	0.30	2.11	5.40	7.80	251	11,061	86.5	:	1984
1985	-1.70	1.95	4.08	8.40	201	12,935	92.9	:	1985
1986	-5.20	0.00	6.12	8.70	160	18,032	106.2	:	1986
1987	-1.70	0.46	7.40	10.40	122	24,195	133.7	:	1987
1988	-0.60	0.79	10.31	11.20	126	28,865	171	:	1988
1989	2.70	2.81	10.77	9.90	143	34,968	212.8	:	1989
1990	1.30	3.17	11.09	11.70	136	26,872	276.8	:	1990
1991	0.40	2.90	1.94	3.60	125	23,350	285.3	:	1991
1992	-1.00	1.50	-2.29	0.60	125	17,189	241	:	1992
1993	-1.80	1.20	3.40	1.10	112	19,641	197.7	:	1993
1994	-1.40	0.50	4.60	2.10	99	19,509	174.9	:	1994
1995	-1.00	-0.30	5.20	3.20	103	19,868	151.4	:	1995
1996	-1.50	0.40	9.00	3.30	116	19,361	134.5	:	1996
2008	3.10	1.10	0.80	2.10	90.28	8,830	82.4	:	2008
2009	-5.20	-1.70	0.50	2.70	92.13	10,540	73.5	:	2009
2010	0.70	-0.40	0.90	2.80	81.51	10,210	69.6	116.94	2010
2011	1.40	-0.10	2.80	2.70	77.57	8,440	68.2	123.41	2011
2012	-1.10	-0.30	2.10	2.50	86.32	10,430		108.46	2012
2013	1.90	0.90	3.30	3.60	105.4	16,320		105.95	2013
2014	2.70	2.90	3.60	3.40	119.8	17,360		53.69	2014
2015	-3.20	0.20	4.90	3.70	120.4	19,000		36.75	
2016	-4.30	-0.40	6.80	3.40	103.63	16,610		40.76	