
Financial Architecture of Asia ---India and china---

Naoyuki Yoshino
Dean, Asian Development Bank Institute
(ADBI)

Professor Emeritus Keio University nyoshino@adbi.org

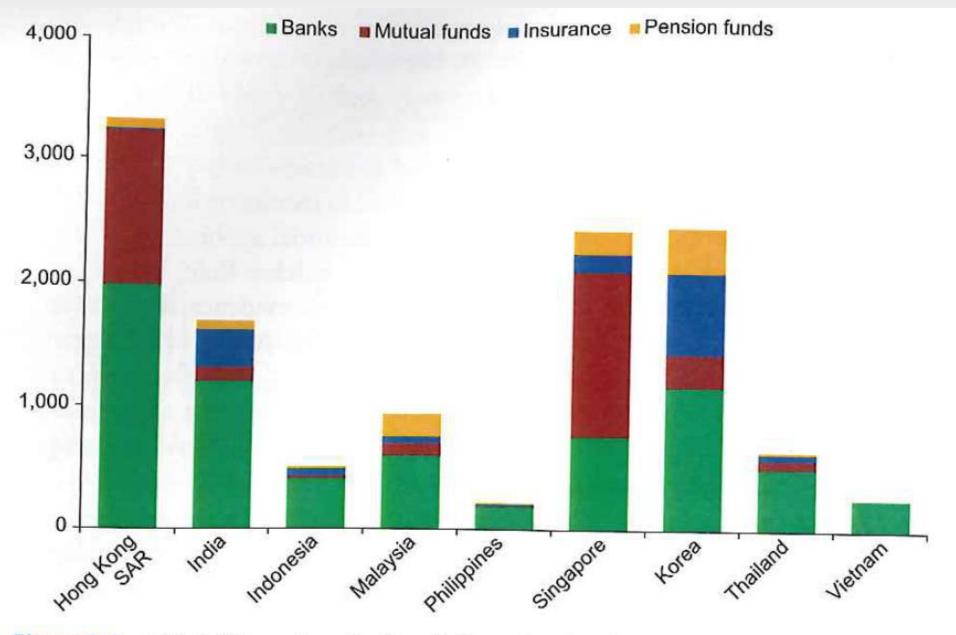


Figure 4.6 A More Diverse Investor Base in Emerging Asia (Domestic investor base, billions of U.S. dollars)

Characteristics of Financial Market

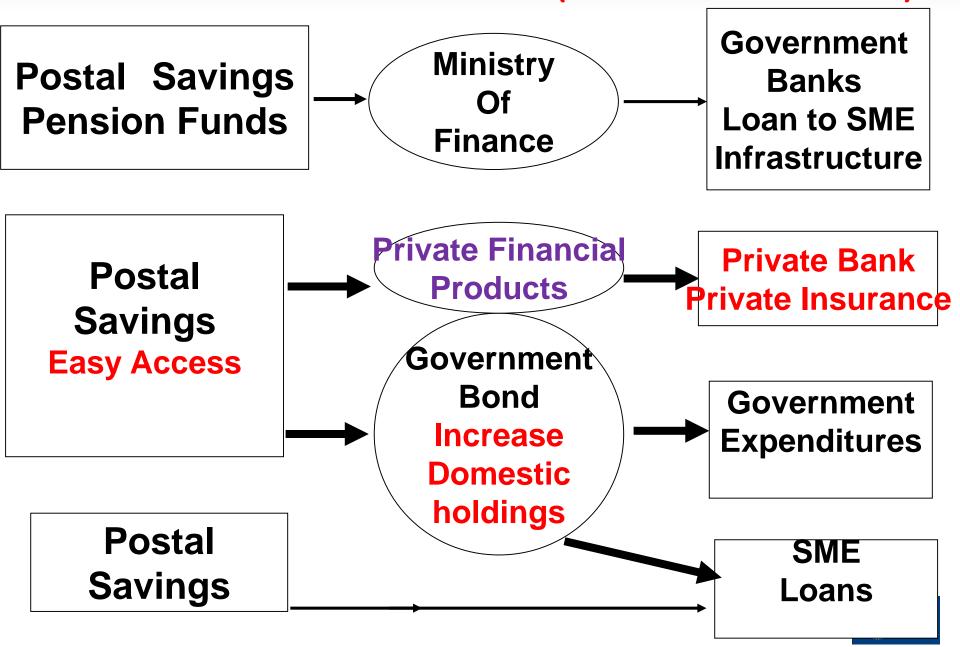
- 1, Bank based financial market
- 2, Small share of institutional investors (Insurance and Pension funds)
- → Lack of long term investors
- 3, Access to finance is limited in certain countries
 Utilize post office and internet banking
- 4, Money lenders charge very high interest rate
- 5, Small share of mutual funds
- 6, Lack of venture capital
- 7, Huge Needs for Infrastructure Investment

India's characteristic of Savings Strong preference on gold and jeweries

Domestic Savings → does not circulate

Lack of domestic investment

Lack of finance for infrastructure investment


Financial Education for investment

Chinese: Strong Preference of Stocks

Investments in real estate and stocks by individual investors

Financial Inclusion in India (Use of Post Office)

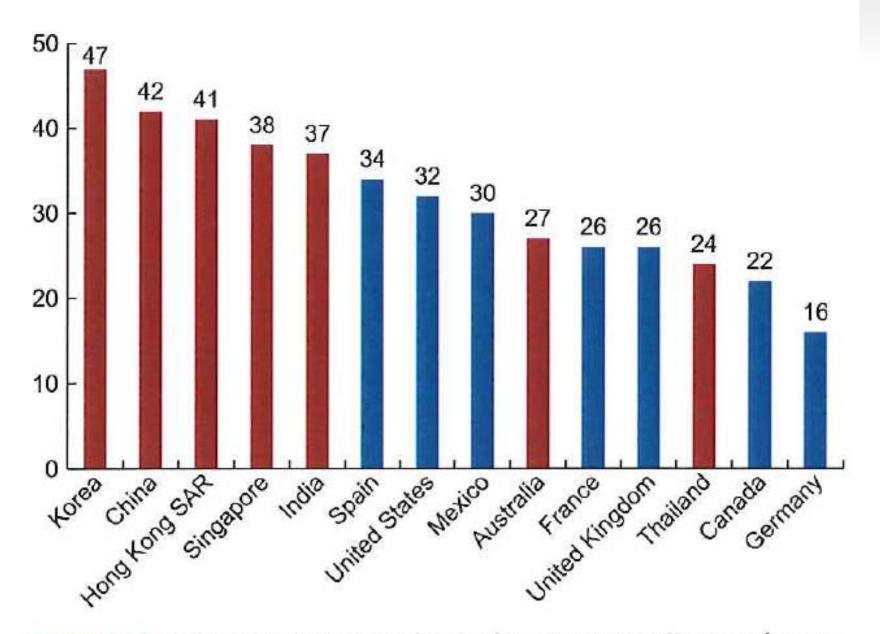


Figure 2.12 Selected Economies: Mobile Banking Penetration (Percent of respondents reporting mobile banking transactions in the last three months, 2012)

Financial Education in Schools

- 1, Primary School, Postal Savings by children
 Each month students put some money,
 At the end of the 6th year → huge amount
- 2, Secondary School and High School taught in the courses of "Civics, Home-economics"
- 3, Financial education in Japan's primary school is taught at "Home making courses".

 Lack of expertise in school
- 4, Retiree from financial institutions could teach financial economics to students.

Video lectures

Financial Education Promotion Council

What kind of subjects and items should be taught at each level of school education?

Chair Person, Naoyuki YOSHINO

Central Bank of Japan

Financial Services Agency (FSA)

Ministry of Education

Consumer Protection Agency (Government of Japan)

Bankers Association of Japan

Securities Dealers Association

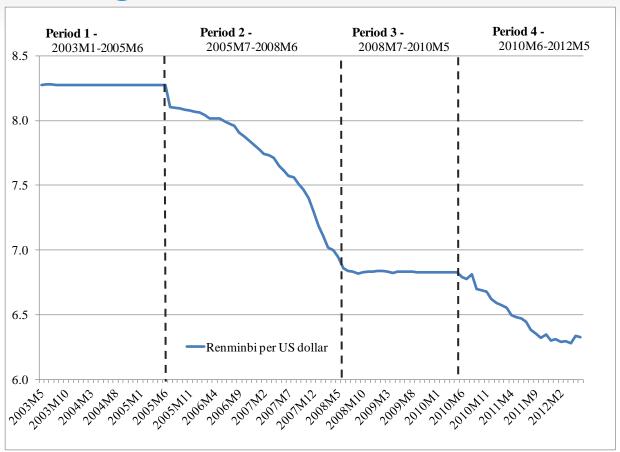
Insurance Association

Trust Bank Association

Investment Trust Association

Financial Planners Association

China & World Economy


China & World Economy / 36-55, Vol. 22, No. 3, 2014

Dynamic Transition of Exchange Rate Regime in China

Naoyuki Yoshino, Sahoko Kaji, Tamon Asonuma*

Chinese Exchange Rate (RMB) Fluctuations

Sources: IMF IFS.

$$CNY_{t} = (b_{0,1} + \sum_{i=\{2,3,4\}} b_{0,1}D_{i}) + \sum_{j\in C} (b_{j,1} + \sum_{i=\{2,3,4\}} b_{j,i}D_{i})X_{j,t} + u_{t},$$
 (1)

Table 1. Estimates of Weights on the US Dollar Rate

	Period 1	Period 2	Period 3	Period 4
Sample period	7 May 2003-	25 July 2005-	1 July 2008–	1 June 2010-
	22 July 2005	30 June 2008	28 May 2010	1 June 2012
Estimated weights on the US	0.999**	0.842**	0.918**	0.819**
dollar rate	(0.001)	(0.036)	(0.017)	(0.039)

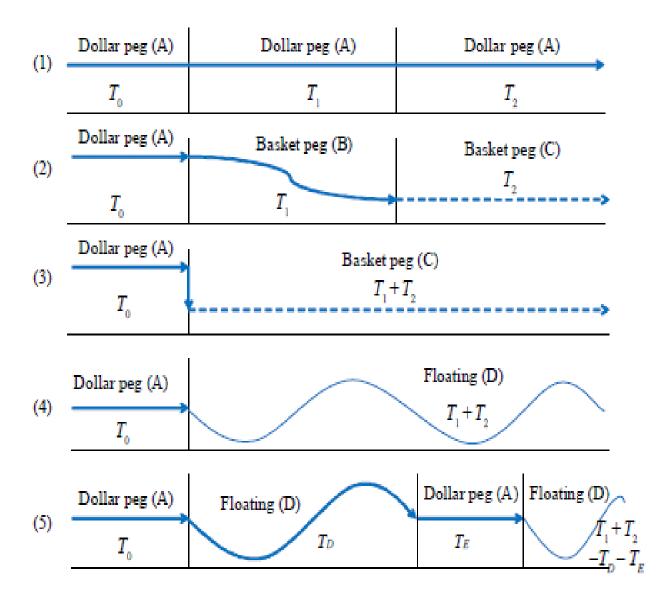

$$CNY_{t} = (b_{0,1} + \sum_{i=\{2,3,4\}} b_{0,1}D_{i}) + \sum_{j\in C} (b_{j,1} + \sum_{i=\{2,3,4\}} b_{j,i}D_{i})X_{j,t} + u_{t},$$
 (1)

Table 1. Estimates of Weights on the US Dollar Rate

Sample period	Period 1 7 May 2003– 22 July 2005	Period 2 25 July 2005– 30 June 2008	Period 3 1 July 2008– 28 May 2010	Period 4 1 June 2010– 1 June 2012
Estimated weights on the US	0.999**	0.842**	0.918**	0.819**
dollar rate	(0.001)	(0.036)	(0.017)	(0.039)

Figure 3. Five Policies to Follow in the Transition to Stable Regimes

Quantitative analysis

• Cumulative losses : $T_0=0$, $T_1=18$, & $T_2=18$

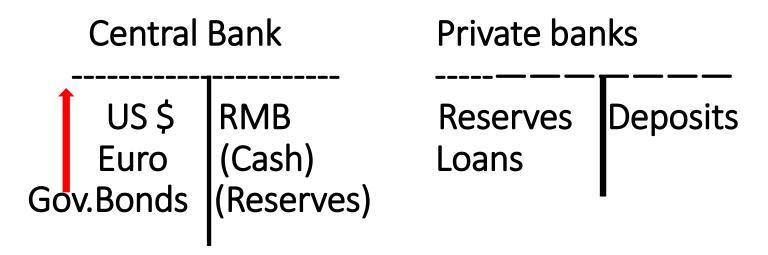
$$L(T_1, T_2) \equiv \sum_{t=1}^{T_0 + T_1 + T_2} \beta^{t-1} (y_t - \bar{y}')^2$$

Table 8. Cumulative Losses and Optimal Values of Instruments

Stable regime	Policy (1) Dollar peg	Policy (2) Basket peg	Policy (3) Basket peg	Policy (4) Floating	Policy (5) ^b Managed floating
Adjustment	_	Gradual	Sudden	Sudden	Sudden
Instrument value	$i^* = 4.34$	$v^* = 0.58$	$v^{**} = 0.68$	$m^* = 0.016$	$m^{**} = 0.017$
Cumulative loss (value)	17.04	1.80	1.91	2.67	2.31
Cumulative loss (percent of $(\overline{y}^2)^*$)	23.4	2.4	2.6	3.7	3.2

Source: Authors' calculations

Note: *We calculate the value of \overline{y}^2 shown in Section IV and obtain $\overline{y}^2 = 72.8$. *For T = 7, the cumulative loss is 3.54 ($m^{**} = 0.017$).

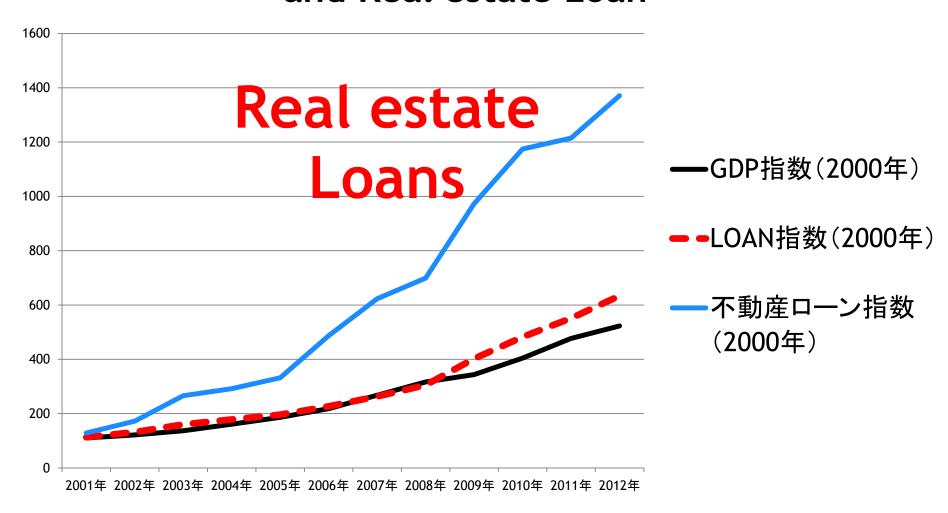


Policy Implications

- 1, For a country like China, gradually adjusting to a basket peg regime is superior to the other proposed transition policies.
- Advantage : it can minimize the negative influence of both interest rates and exchange rates on output
- 2,A sudden shift to a basket peg is the second best solution, and is superior to a sudden shift to floating.
- Drawback : a lack of control over the negative influence of interest rates and exchange rates during the shift.
- Advantage: it can still assign optimal weights to currencies to stabilize output fluctuations once it has adopted a basket peg regime.

1 Chinese Exchange Rate (RMB)

Dollar Peg -> Imbalance in Current Account Stability of Employment



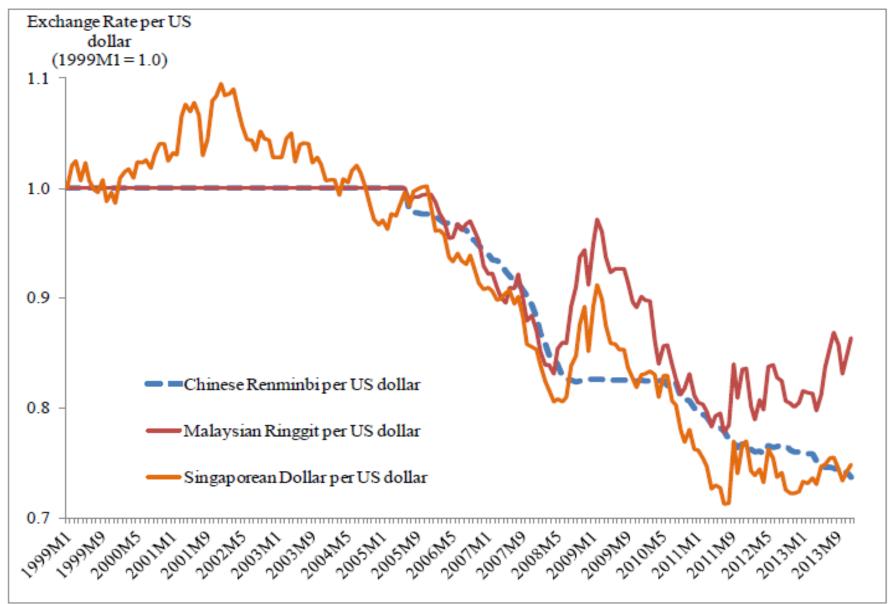
2, Bubble

Bank loans to real estate and housing

CHINA GDP, Bank Loan, and Real estate Loan

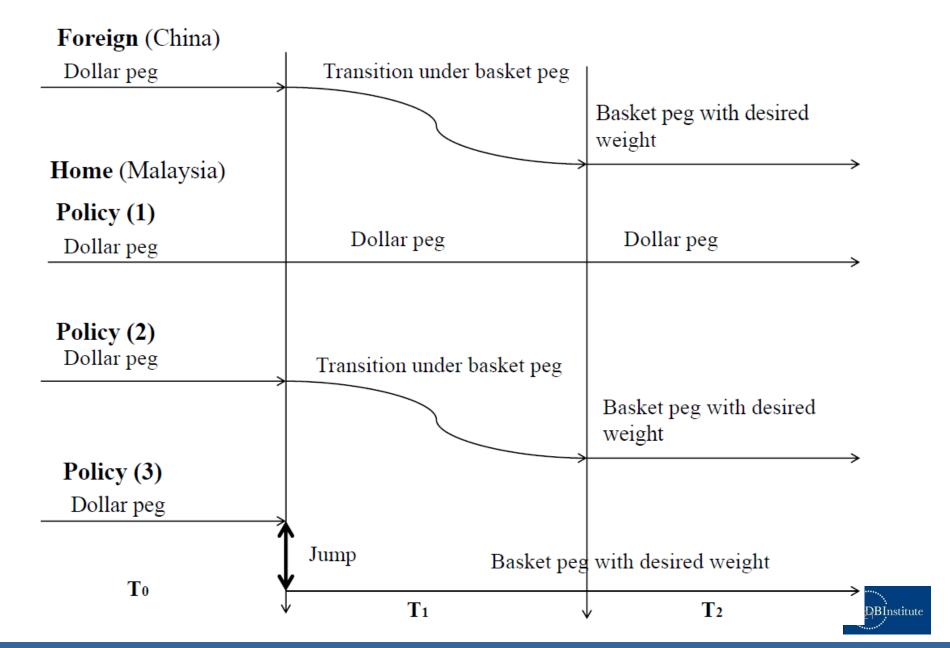
RMB Money Supply in China and Exchange Rate

- 1, Export driven recovery depreciation of RMB
- 2, Domestic Demand lead recovery middle income class → Consumption
- 3, Local government relies on property tax higher real estate prices are welcome
- 4, Shanghai stock crush
 Professional investors left the market
 Individual investors kept on putting money
 stock price keeping operation

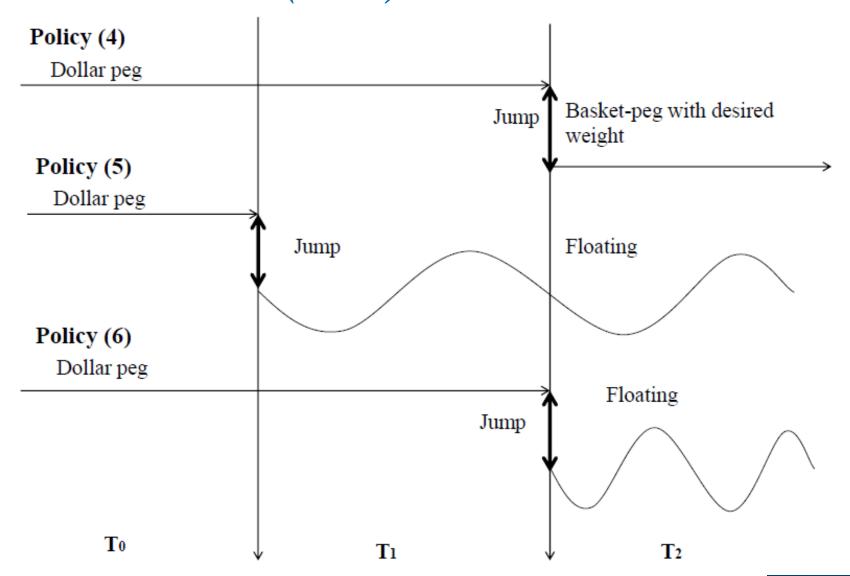

Review of Development Economics, 19(3), 624–637, 2015 DOI:10.1111/rode.12163

Dynamic Analysis of the Exchange Rate Regime: Policy Implications for Emerging Countries in East Asia

Naoyuki Yoshino, Sahoko Kaji, and Tamon Asonuma*



Motivation



Sources: IMF IFS.

Transition Policies

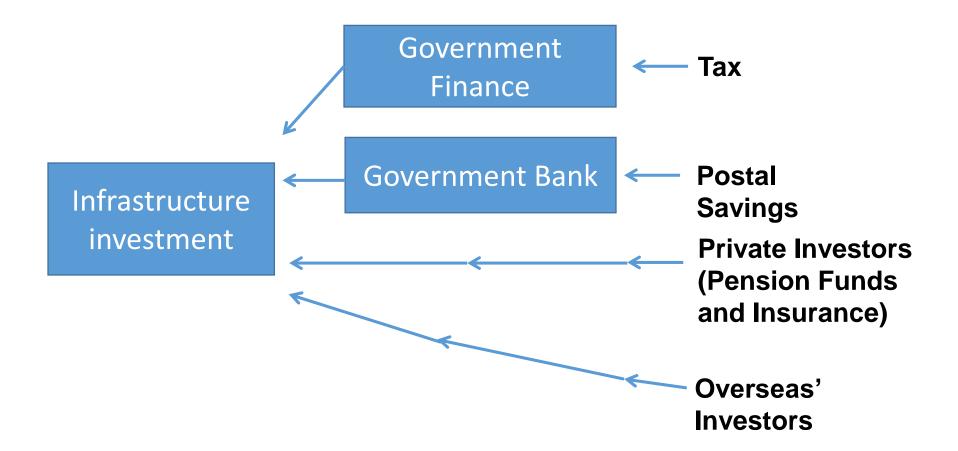
Transition Policies (cont.)

Quantitative analysis

(1) Malaysia

	Policy (1)	Policy (2)	Policy (3)	Policy (4)	Policy (5)	Policy (6)
Stable regime	Dollar peg	Basket peg	Basket peg	Basket peg	Floating	Floating
Adjustment	-	Gradual	Sudden	Sudden	Sudden	Sudden
Basket weight	1.00	0.40	0.54	0.45	-	-
Cumulative loss (%)	17.51	17.35	17.46	17.46	24.31	25.93

Sources: Authors' calculations


(2) Singapore

	Policy (1)	Policy (2)	Policy (3)	Policy (4)	Policy (5)	Policy (6)
Stable regime	Dollar peg	Basket peg	Basket peg	Basket peg	Floating	Floating
Adjustment	-	Gradual	Sudden	Sudden	Sudden	Sudden
Basket weight	1.00	0.67	0.9	0.85	-	-
Cumulative loss (%)	45.60	45.56	45.64	45.61	60.51	64.18

Sources: Authors' calculations

Huge Infrastructure Needs and Its Finance

Large Projects by Professional Investors

Pension Funds

Insurance companies

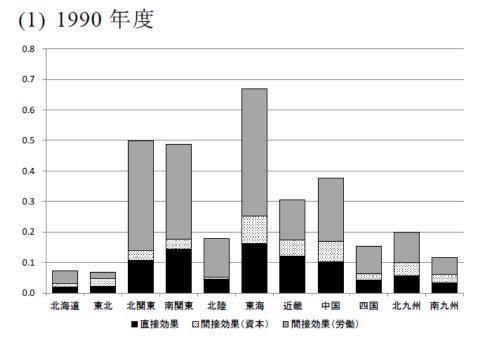
Mutual Funds

Community Type Infrastructure

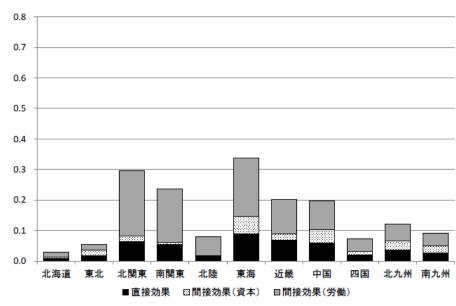
→ Hometown Investment Trust Funds

Wind power Generator Funds

Japanese Wine Fund


Local Airport

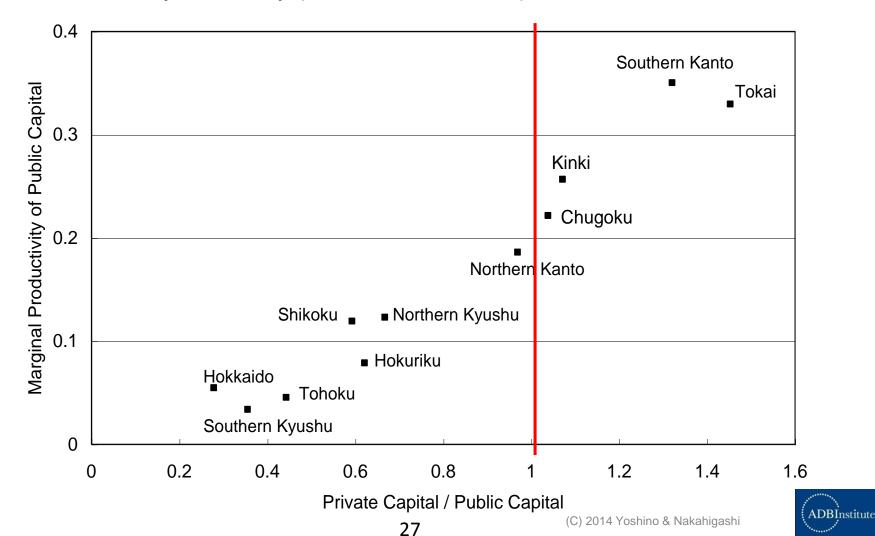
Agricultural Farmers' Fund



Economic Effect of Infrastructure Investment Regional Disparities (Manufacturing Industry)

図1 第2次産業における社会資本の生産力効果の変化

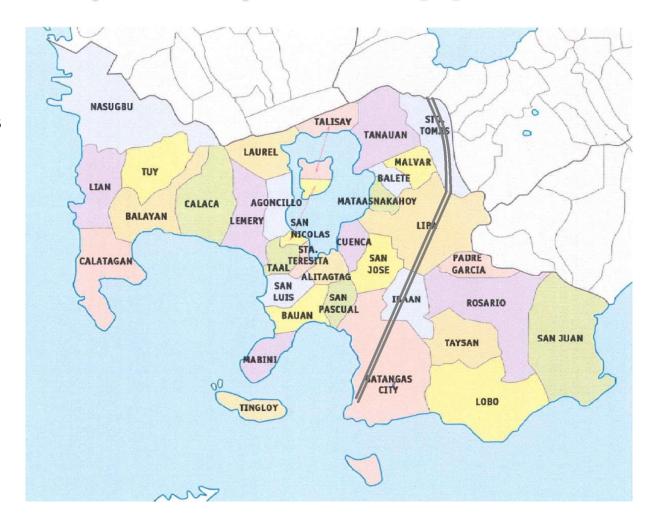
(2) 2010 年度


(出所) Nakahigashi-Yoshino (2015)

Effectiveness of Public Investment

- "Private capital/Public capital ratio" to "Marginal productivity of Public capital" -

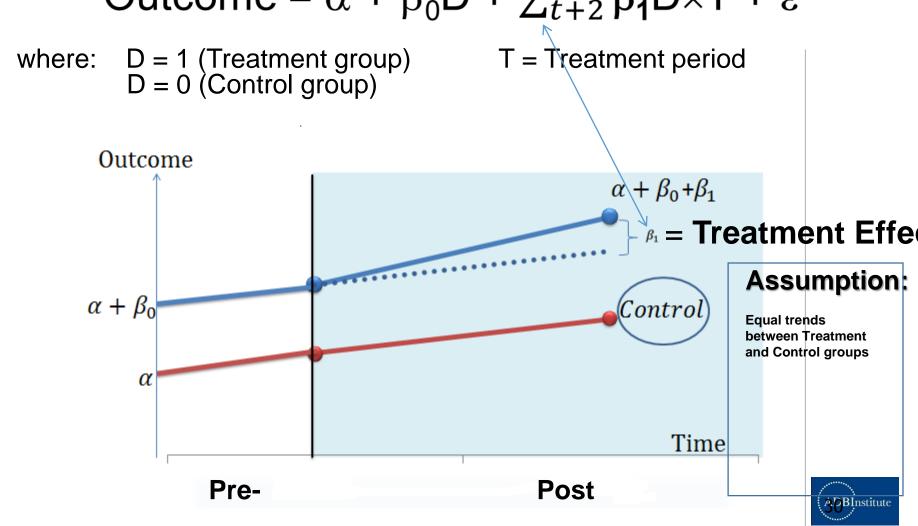
Secondary Industry (Industrial Sector)



Thailand (Effectiveness of Infrastructure)

		Private capital	Public capital	Direct Indirect effect effect Capital Laboration		effect Labor
Agriculture, fore	est, hunting a	and fishing				
	1971-1980	0.971	0.778	0.086	0.618	0.074
	1981-1990	0.912	0.516	0.107	0.323	0.087
	1991-2000	0.859	0.101	0.068	-0.059	0.092
	2001-2012	0.814	-0.185	0.018	-0.293	0.090
Manufacturing						
	1971-1980	0.710	0.526	0.191	0.111	0.224
	1981-1990	0.623	0.426	0.163	-0.004	0.266
	1991-2000	0.554	0.409	0.135	0.190	0.083
	2001-2012	0.631	0.902	0.173	1.081	-0.351

Case Study: Southern Tagalog Arterial Road (STAR), Philippineses


- The Southern Tagalog Arterial Road (STAR) project in Batangas province, Philippines (south of Metro Manila) is a modified Built-Operate-Transfer (BOT) project.
- The 41.9 km STAR tollway was built to improve road linkage between Metro Manila and Batangas City, provide easy access to the Batangas International Port, and thereby accelerate industrial development in Batangas and nearby provinces.

Method: Difference-in-Difference (DiD) Analysis

Outcome =
$$\alpha + \beta_0 D + \sum_{t=2}^{t-4} \beta_1 D \times T + \epsilon$$

Difference-in-Difference Regression: Spillover

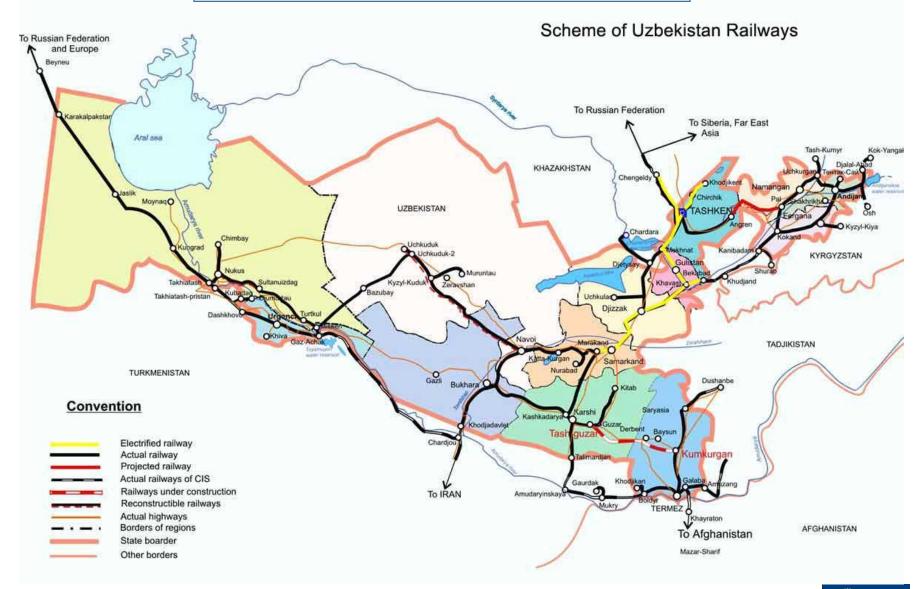
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Property	Property	Business	Business	Regulatory	Regulatory	User	User
	tax	tax	tax	tax	fees	fees	charge	charge
Treatment D	1.55535	0.736	1.067	0.438	1.372	0.924	0.990	0.364
	(1.263)	(0.874)	(1.316)	(1.407)	(1.123)	(1.046)	(1.095)	(1.028)
Treatment D	0.421**	-0.083	1.189***	0.991**	0.248***	-0.019	0.408***	-0.010
× Period _{t+2}	(0.150)	(0.301)	(0.391)	(0.450)	(0.084)	(0.248)	(0.132)	(0.250)
Treatment D	0.447**	0.574***	1.264** [*]	1.502***	0.449* [*]	0.515***	0.317**	0.434**
\times Period _{t+1}	(0.160)	(0.118)	(0.415)	(0.542)	(0.142)	(0.169)	(0.164)	(0.167)
Treatment D	0.497***	0.570**	1 110***	1 0 4 4 * * *	0.004**	0.040***	0.250	,
×		(0.223)	1.440***	1.641***	0.604**	0.642***	0.350	0.422
Period _{t0}	(0.128)	` '	(0.417)	(0.482)	(0.183)	(0.181)	(0.271)	(0.158)
Treatment D	1.294**	0.387	2.256**	1.779**	1.318**	0.838*	0.959	0.197
×	(0.674)	(0.728)	(0.957)	(0.470)	(0.649)	(0.448)	(0.714)	(0.560)
Period _{t-1}	(0.074)	(0.720)	(0.957)	(0.470)	(0.049)	(0.446)	(0.7 14)	(0.500)
Treatment D	1.163*	0.336	2.226**	1.804**	1.482**	1.044**	0.941	0.247
×	(0.645)	(0.594)	(0.971)	(0.531)	(0.634)	(0.413)	(0.704)	(0.531)
Period _{t-2}	(0.040)	(0.004)	(0.571)	(0.551)	(0.004)	(0.410)	(0.704)	(0.551)
Treatment D	1.702*	0.450	2.785**	2.070***	1.901***	1.238***	1.732***	0.676
×	(0.980)	(0.578)	(1.081)	(0.544)	(0.630)	(0.369)	(0.598)	(0.515)
Period _{t-3}	(0.000)	(0.070)	(1.001)	(0.011)	(0.000)	(0.000)	(0.000)	(0.010)
Treatment D								
×	2.573***	1.100	3.428***	2.560***	2.288***	1.509***	2.030***	0.787
Period _{t-4,}	(0.900)	(0.758)	(0.928)	(0.350)	(0.563)	(0.452)	(0.607)	(0.745)
forward		0.000				4.00=		4 0 40 1
Construction		2.283**		1.577		1.207		1.942*
	4.4.00***	(1.172)	4 4 4 0 * * *	(1.196)	40.00***	(0.855)	40.00***	(1.028)
Constant	14.69***	-2.499 (8.830)	14.18***	2.230	13.66***	4.597	13.08***	-1.612 (7.94)
Ν	(0.408) 80	(8.839) 73	(0.991) 79	(9.094) 73	(0.879) 80	(6.566) 73	(0.649) 77	(7.84) 73
N R ²	0.29	73 0.41	79 0.37	73 0.44	0.43	7.5 0.50	0.26	7.3 0.39
- 11	0.29	0.41	0.37	0.44	0.43	0.00	0.20	0.08

Clustered standard errors, corrected for small number of clusters; * Significant at 10%. ** Significant at 5%. *** Significant at 1%.

ADBInstitute

The Southern Tagalog Arterial Road (STAR) 1. Philippines, Manila

表 8 フィリピンの STAR 高速道路の影響のない地域と比較した事業税の増加額


(単位:100万ペソ)

	t_2	t_1	t_0	t ₊₁	t ₊₂	t ₊₃	t ₊₄ 以降
Lipa 市	134.36	173.50	249.70	184.47	191.81	257.35	371.93
Ibaan 市	5.84	7.04	7.97	6.80	5.46	10.05	12.94
Batangas 市	490.90	622.65	652.83	637.89	599.49	742.28	1208.61

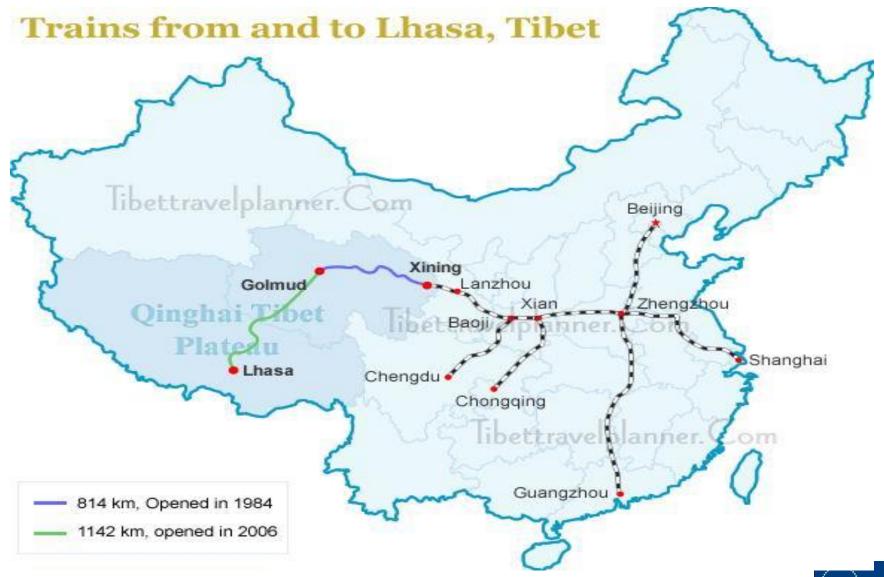
(出所) Yoshino and Pontines (2015)より筆者作成

Uzbekistan: Railway

	come	railway period	railway period	rence
Non- affected group	GDP growth rate	8.3	8.5	0.2
Affected Group	GDP growth rate	7.2	9.4	2.2

Pre-

Regions


Out

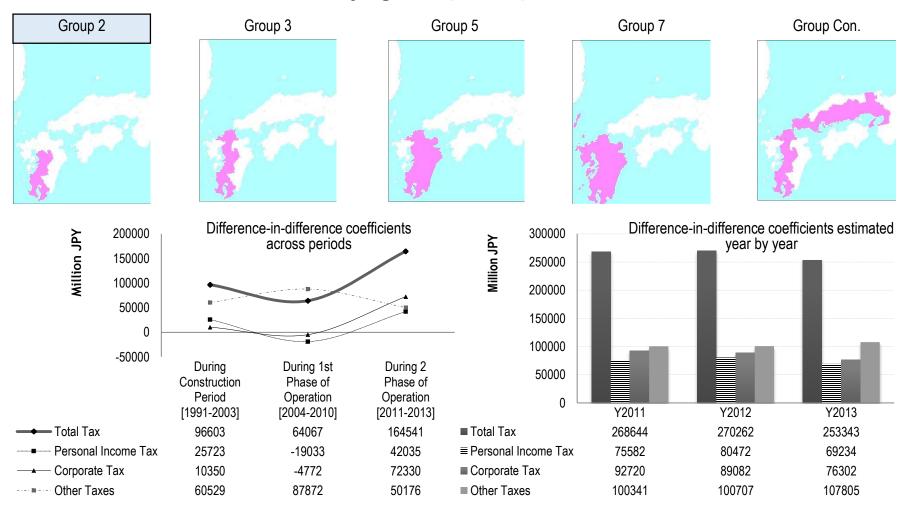
Diffe

Post-

Qinghai-Tibet Railway Map

Tibet Railway

Source	SS	df		MS		Number of obs = 72 F(6, 65) = 7.73
Model Residual	8.28173613 11.6075298	6 65		3028935 3577382		Prob > F = 0.0000 R-squared = 0.4164
Total	19.8892659	71	.280	0130506		Adj R-squared = 0.3625 Root MSE = .42258
differencel	Coef.	Std.	Err.	t	P> t	[95% Conf. Interval]
govspending1 population1 population0	.0118414 .0034233 0102002	.0028 .0013	616	4.15 2.51 -2.69	0.000 0.014 0.009	.0061389 .017544 .000704 .0061426 01778080026196
govspending0 Dummy Dummy2	0206841 .0924005 .061252	.0055 .2097	625	-3.71 0.44 0.32	0.000 0.661 0.753	03182480095435 3265242 .5113252 3256034 .4481074
_cons	.4984291	.2045		2.44	0.018	.0899961 .906862



Japanese Bullet Train Kyushu Shinkansen

Japanese Bullet Train Estimation results by group of prefectures

Note: Numbers for tax revenue amount adjusted for CPI with base year 1982. Pre-shinkansen construction period covers years from 1982 to 1990. Non-affected groups include rest of the prefectures

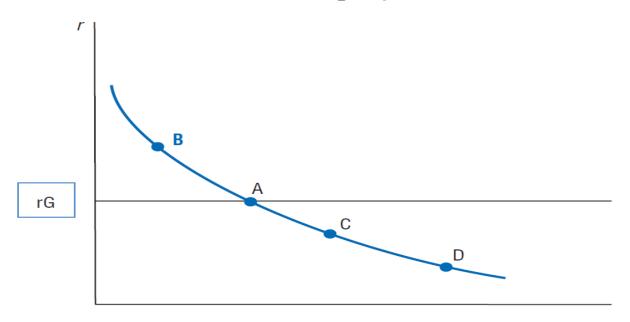
Treated groups: Group 2: Kagoshima, Kumamoto
Group 3: Kagoshima, Kumamoto, Fukuoka
Group 5: Kagoshima, Kumamoto, Fukuoka, Oita, Miyazaki

Group 7: Kagoshima, Kumamoto, Fukuoka, Oita, Miyazaki, Saga, Nagasaki Group Con.: Kagoshima, Kumamoto, Fukuoka, Yamaguchi, Hiroshima, Okayama, Hyogo, Osaka

Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 2nd PHASE OF OPERATION period

{2011-2013}, mln. JPY (adjusted for CPI, base 1982)

1	1	. 1	1	1	1	1	1	1	1	1	1 19	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2
9	9	9	9	9	9	9	9	9	9	9	9 94	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	3	4	5	6	7	8	9	0	1	2	3	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3


COMPOSITION OF GROUPS

Variable	Regression 1	Regression 2	Regression 3	Regression 4	Regression 5	Group2	Group5
Treatment2	72330.012**					Kagoshima	Kagoshima
	[2.2]					Kumamoto	Kumamoto
Number of tax							Fukuoka
payers	5.5277056***	5.5585431***	5.558603***	5.5706545***	5.9640287***	Group3	Oita
	[3.13]	[3.14]	[3.14]	[3.14]	[3.07]	Kagoshima	Miyazaki
Treatment3		104664.34*				Kumamoto	Miyazaki
		[2]					
Treatment5			82729.673**			Fukuoka	
			[2.1]				
Treatment7				80998.365**			GroupCon
				[2.34]		Group7	Kagoshima
TreatmentCon					179632	Kagoshima	Kumamoto
					[1.58]	Kumamoto	Fukuoka
Constant	-568133.98**	-573747.28**	-574245.87**	-576867.56**	-642138.87**		
	[-2.07]	[-2.08]	[-2.08]	[-2.09]	[-2.1]	Fukuoka	Osaka
						Oita	Hyogo
N	611	611	611	611	611	Miyazaki	Okayama
R2	0.350653	0.352058	0.352144	0.352874	0.364088	Saga	Hiroshima
F	5.062509	5.486197	5.351791	5.431088	16.5551 <u>8</u>	Nagasaki	Yamaguchi

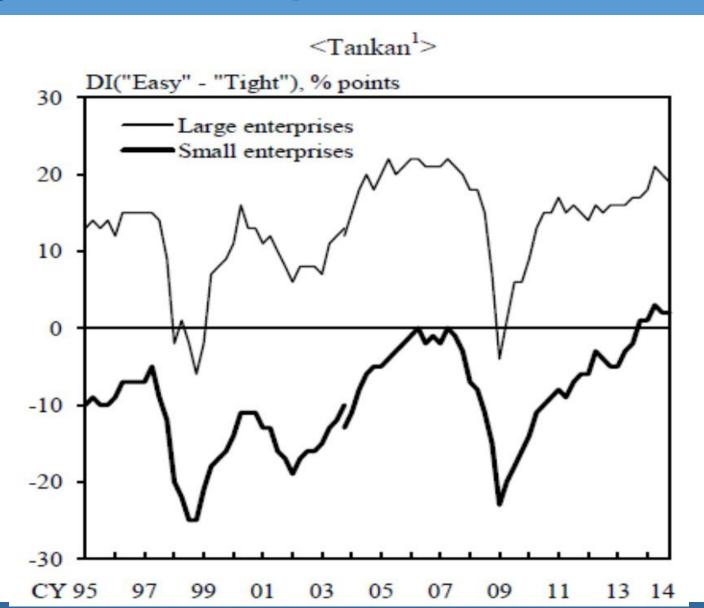
Note: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: * p<.1; ** p<.05; *** p<.01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures

Expected rates of return on project bonds vs. benchmark yield

	No Effor	ts	Efforts to im	prove
No Efforts	(50,	<i>r</i>)	(50,	αr)
	Operating Company	Investors	Operating Company	Investors
Efforts to improve	(100,	r)	(100,	αr)
	Operating Company	Investors	Operating Company	Investors
				; ADRIn

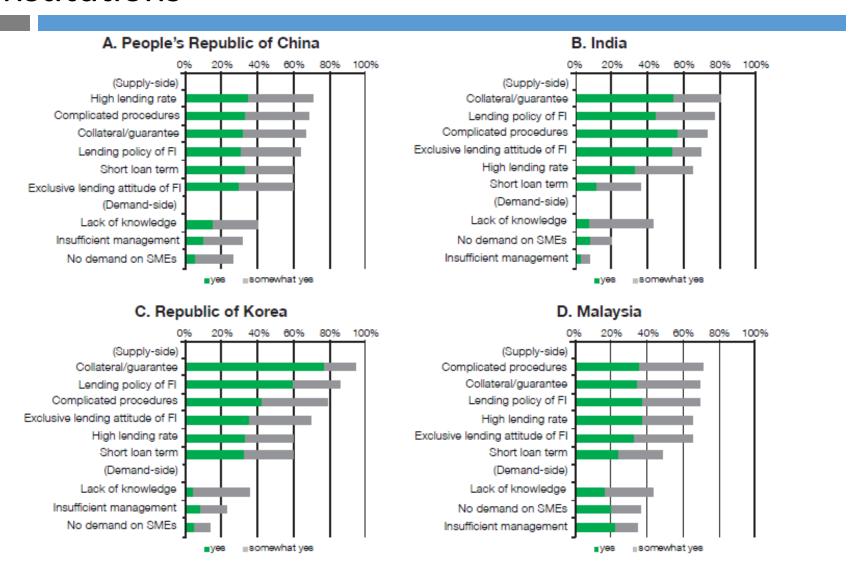
Risks Associated with Infrastructure

1. Risk sharing between private and public


Various Risks (political risk, operational risk, demand risk, ex-post risk, maintenance risk, earthquakes, natural disaster risk)

2, too much reliance on overseas' money

- → future burden for the country
- → Increase domestic savings
- 3, bankable projects or not?
- 4, long term investment



Access to Finance by SMEs and Large Firms in Japan

Barriers for SMEs in Accessing Financial Institutions

Source: ADB–OECD study on enhancing financial accessibility for SMEs: Lessons from recent crises Mandaluyong City, Philippines: Asian Development Bank, 2013

Examined Variable

No.	Symbol	Definition	Category	
1	Equity_TL	Equity (book value)/total liabilities	Loverene	
2 TL_Tassets		Total liabilities/total assets	Leverage	
3	Cash_Tassets	Cash/total assets		
4 WoC_Tassets5 Cash_Sales		Working capital/total assets	Liquidity	
		Cash/net sales		
6	EBIT_Sales	Ebit/sales		
7	Rinc_Tassets	Retained earnings/total assets	Profitability	
8	Ninc_Sales	Net income/sales		
9	EBIT_IE	Ebit/interest expenses	Coverage	
10	AP_Sales	Account payable/sales	A aktivite.	
11 AR TL		Account receivable/total liabilities	Activity	

Note: Retained earnings = the percentage of net earnings not paid out as dividends, but retained by the company to be reinvested in its core business or to pay debt. It is recorded under shareholders' equity in the balance sheet. Ebit = earnings before interest and taxes. Account payable = an accounting entry that represents an entity's obligation to pay off a short-term debt to its creditors. The accounts payable entry is found on a balance sheet under current liabilities. Account receivable = money owed by customers (individuals or corporations) to another entity in exchange for goods or services that have been delivered or used, but not yet paid for. Receivables usually come in the form of operating lines of credit and are usually due within a relatively short time period, ranging from a few days to a year.

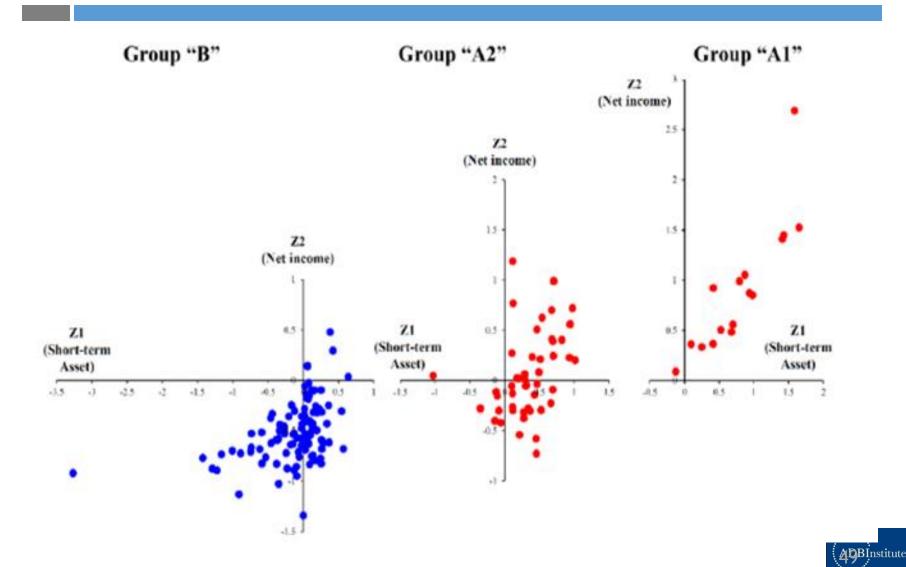
Cluster analysis: the average linkage method

Dendogram Using Average Linkage

Factor Loadings of Financial Variables after Direct Oblimin Rotation

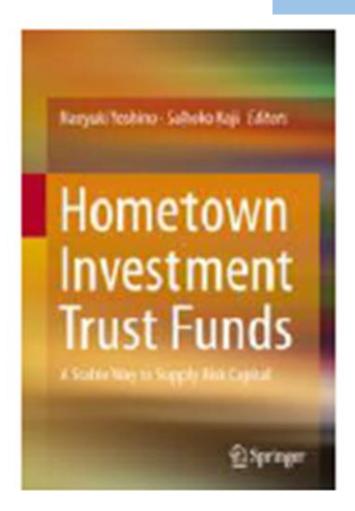
Variables	Component			
(Financial Ratios)	Z1	Z 2	Z 3	Z4
Equity_TL	0.009	0.068	0.113	0.705
TL_Tassets	-0.032	-0.878	0.069	-0.034
Cash_Tassets	-0.034	-0.061	0.811	0.098
WoC_Tassets	-0.05	0.762	0.044	0.179
Cash_Sales	-0.937	0.021	0.083	0.009
EBIT_Sales	0.962	0.008	0.024	-0.004
Rinc_Tassets	0.014	0.877	0.015	-0.178
Ninc_Sales	0.971	-0.012	0.015	0.014
EBIT_IE	0.035	0.045	0.766	-0.098
AP_Sales	-0.731	-0.017	-0.037	-0.016
AR_TL	0.009	-0.041	-0.104	0.725

Note: The extraction method was principal component analysis, The rotation method was direct oblimin with Kaiser normalization.



Credit Rating of SMEs using Asian Data

```
(i) Sales(ii) Assets(iii) Liquidity (Cash)(iv) Total Debt
```



Grouping Based on Principal Component (Z1-Z2) and Cluster Analysis

Possible Solutions Start up businesses, farmers

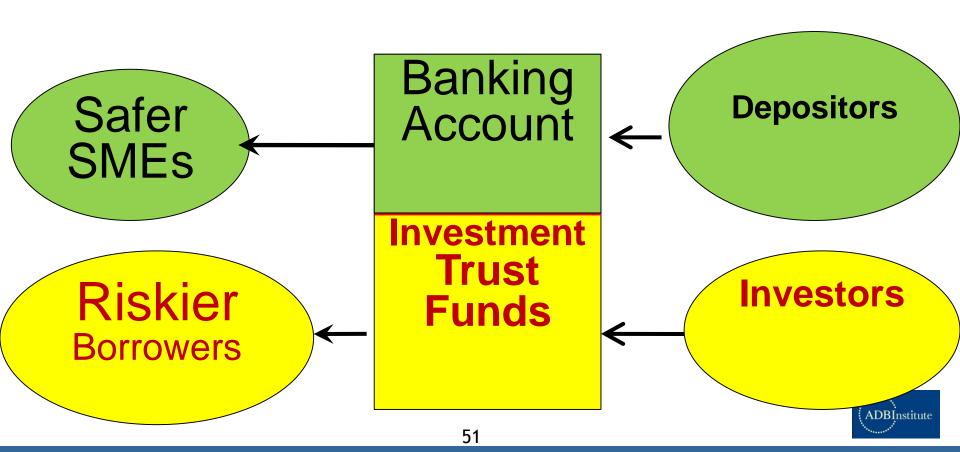
Hometown Investment Trust Funds

A Stable Way to Supply Risk Capital

Yoshino, Naoyuki; Kaji Sahoko (Eds.) 2013, IX, 98 p. 41 illus.,20 illus. in color

Available Formats:

ebook Hardcover Springer


Japan, Cambodia Vietnam, Peru

Bank-based SME financing and regional financing to riskier borrowers

- 1. Bank Loans to relatively safer borrower
- 2. Hometown Investment Trust Funds/

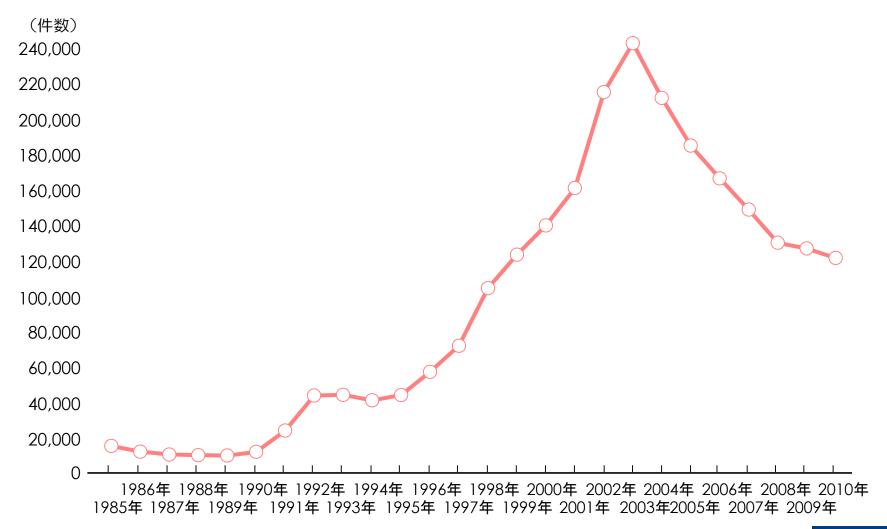
E-Finance, Internet financing

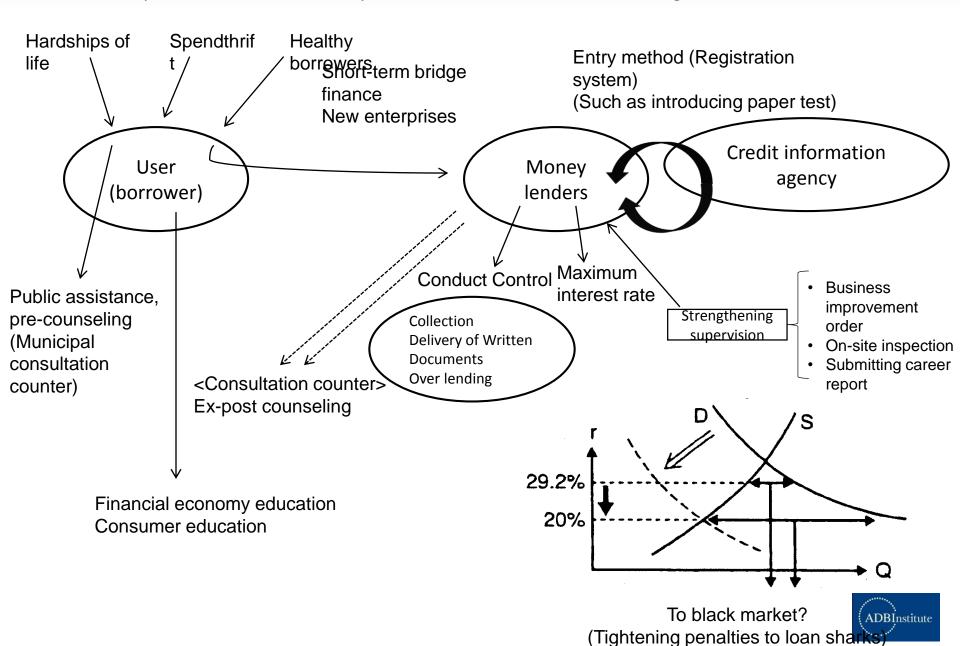
Investment in SMEs and start up businesses

すべてを失い再起を断念しそうになった時の

Agricultural Funds

Beans and Wine

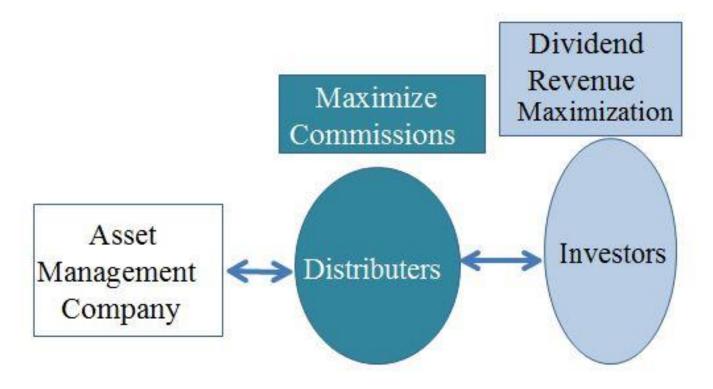




Number of Households' Default in Japan

Full picture of Users, money lenders and market, surrounding the consumer credit

New Law – Microcredit Regulation hotline from Consumers (FSA)


- 1, Total Amount of Borrowing < 1/3 of Income
- 2, Ceiling Interest Rate = 20% more than 96% → 29% → 20%
- 3, Borrowers Information
 Aggregated total individual borrowings
- 4, Paper examination to be a money lender
- 5, Minimum capital requirement
- 6, Set up of Self regulatory organization
- 7, Consumer hotline (FSA, Money lenders association)

Commissions and Fees of Distributors

Necessity for Review of Asset Management Fees

Sales of Financial Products

Source: Yoshino (2013)

Longer term Investment achieves higher rate of return

A0=100	Gross return	1	Net return		Sales		Trust
	on		of		Charges		Remunerati
	<u>investment</u>		investors				ons
No transaction	R	=	п	+	Т	+	ε
during the period	28.87		10.70		2.45		15.72
•							
Switching funds	R	=	п	+	Т	+	ε
every 2.9 years	28.19		3.29		9.86		15.04
Switching funds	R	=	П	+	т	+	ε
every 2.5 years	28.19		1.33		11.82		15.04

Switching funds every 2.0 years

ds	R	=	п	+	т +	ε
S	27.8		-0.26		13.41	14.65

Period 2000.1 2013.12


```
Purpose of holding mutual funds (Survey 2014)
USA

(i) 91% Retirement

(ii) 49% Reduce taxable income

(iii) 49% Emergency

Japan

(i) 36.7% No specific reason,

Recommended by retailers

(ii) 30.4% Prepare for after retirement

(iii) 17.7% Asset Diversification
```

Period of holding mutual funds

(Survey USA2004, JPN2014)

```
USA
42%
Longer than 10years
27%
6 to 10 years
27%
1 to 5 years
Japan
40.7%
No specific period
21.0%
3 years—5 years
14.8%
2 years—3 years
```


References

Sahay, Schiff, Lom, Sumi and Walsh, Edition (2015) The Future of Asian Finance, International Monetary Fund, Washington DC. Yoshino N. Kaji, S. (2013) *Hometown Investment Trust Funds*, Springer, March 2013

Yoshino,N and T. Hirano (2012) "Counter-Cyclical Buffer of the Basel Capital Requirement and Its Empirical Analysis", chapter in *Current Developments in Monetary and Financial Law* (Vol. 6): Restoring Financial Stability—The Legal Response, edited by the International Monetary Fund (IMF, 2012). Yoshino, N and Farhad Taghizadeh (2015), "An Analysis of Challenges Faced by Japan's Economy and Abenomics" *The Journal of Japanese Political Economy*, Taylor and Frances.

Yoshino, N., Taghizadeh Hesary, F. (2014), 'Analytical Framework on Credit Risks for Financing SMEs in Asia'.

<u>Asia-Pacific Development Journal</u>. United Nations

Economic and Social Commission for Asia and the Pacific (UN-ESCAP)

References

Yoshino, Naoyuki (2010) "Financing Transport Infrastructure Investment", OECD (ed.), Southeast Asian Economic Outlook 2010, OECD Publishing.

Yoshino, Naoyuki (2012) "Global Imbalances and the Development of Capital Flows among Asian Countries", OECD Journal: Financial Market Trends, Vol. 2012/1

Yoshino, Naoyuki and Masaki Nakahigashi (2004) "The Role of Infrastructure in Economic Development", ICFAI Journal of Managerial Economics, 2, pp. 7-24

Yoshino, Naoyuki and Victor Pontines (2015) "The Highway Effect on Public Finance: Case of the STAR Highway in the Philippines", Asian Development Bank Institute (ADBI) Working Paper, forthcoming.

Yoshino, Naoyuki, Victor Pontines and Umid Abidhadjaev (2015) "Impact Evaluation of Infrastructure Provision on Public Finance and Economic Performance: Empirical Evidence from Philippines and Uzbekistan", Asian Development Bank Institute (ADBI), Working Paper, forthcoming

